Question Number	Answer		Mark
1(a)	Increasing d will lead to a decrease in C Or see $Q/V = k/d$	(1)	
	Since $C = Q/V$ (a decrease in C) means a decrease in the charge on the capacitor		
	\mathbf{Or} if V is constant (a decrease in C) means a decrease in charge on capacitor	(1)	
1(1)		(1)	2
1(b)	Use of $C = k/d$ with $d = 4.2$ (mm)	(1)	
	use of $Q = CV$ with $V = 6$ V or cancelled later	(1)	
	use of $\Delta Q/Q$ or $\Delta C/C$	(1) (1)	
	% change = 17%	(1)	
	Example of calculation		
	$Q = \frac{6 \text{ V} \times 2.8 \times 10^{-15} \text{ F m}}{3.5 \times 10^{-3} \text{ m}} = 4.8 \times 10^{-12} \text{ C}$		
	$Q = \frac{6 \text{ V} \times 2.8 \times 10^{-15} \text{ F m}}{3.5 \times 10^{-3} \text{ m}} = 4.8 \times 10^{-12} \text{ C}$ $Q = \frac{6 \text{ V} \times 2.8 \times 10^{-15} \text{ F m}}{4.2 \times 10^{-3} \text{ m}} = 4.0 \times 10^{-12} \text{ C}$		
	$\frac{4.8 \times 10^{-12} \text{ C} - 4.0 \times 10^{-12} \text{ C}}{4.8 \times 10^{-12} \text{ C}} = 16.7\%$		
	4.0^10 C		4
1(c)	(rapid changes in position) mean that rapid changes in Q		
	Or a shorter time to charge/discharge	(1)	
	(small C gives) shorter time constant/RC	(1)	2
	Total for question 13		8

Question Number	Answer		Mark
2(a)	Use of $C=Q/V$ V=15 V Use of $W=QV/2 \text{ Or } W=CV^2/2 \text{ Or } W=Q^2/2C$ $W=2.5 \times 10^{-5} \text{ J}$	(1) (1) (1)	4
	$W = 2.3 \times 10^{-3}$ (candidates who use 6.6×10^{-6} C can only score MP1 and MP3) Example of calculation	(1)	4
	$\overline{V} = \overline{Q/C} = 3.3 \times 10^{-6} \text{C} / 220 \times 10^{-9} \text{F}$ $V = 15 \text{V}$ $W = QV/2 = (3.3 \times 10^{-6} \text{C} \times 15 \text{V})/2$ $W = 2.5 \times 10^{-5} \text{J}$		
2(b)	$Q = 0.2 Q_0$ Or $Q = 6.6 \times 10^{-7}$ C Use of $Q = Q_0$ e ^{-t/RC} t = 7.1 s (candidates who use $Q = 0.8 Q_0$ can only score MP2)	(1) (1) (1)	3
	Example of calculation $Q = 0.2 \ Q_0$ $Q = Q_0 \ e^{-t/RC}$ $0.2 \ Q_0 = Q_0 \ e^{-t/RC}$ $\ln (0.2) = -t/(20 \times 10^6 \ \Omega \times 220 \times 10^{-9} \ F)$ $t = 7.1 \ s$		
2(c)	Either refers to $W = Q^2/2C$ Or $W \propto Q^2$ If Q halves, $W \rightarrow Q^2/8C$ Or halving Q quarters W (Since W becomes a quarter in the time for Q to half) it takes less time for the energy to halve than the charge to halve. (dependent mark on either MP1 or MP2)	(1) (1) (1)	
	Or Refers to $W = QV/2$ Q and V both decrease over time W will decrease faster so takes less time to half in value. (dependent mark on either MP1 or MP2)	(1) (1) (1)	3
2(d)	Synchronous readings Or data logger records readings at exact time Or voltmeter and stop watch need 2 people and data logger only one	(1)	
	More readings can be taken in a shorter time Or higher sampling rate	(1)	2
	(treat as neutral any reference to graph plotting automatically, human reaction time or accuracy)		
	Total for question 15		12

Question Number	Answer		Mark
3(a)(i)	Use of $Q = CV$ Q = 3900 (C)	(1) (1)	2
	Example of answer $Q = 1500 \text{ F} \times 2.6 \text{ V}$ $Q = 3900 \text{ C}$		
3(a)(ii)	Straight line through the origin Passing through 2.6 V and answer to (a)(i) or 4000 C	(1) (1)	2
3(a)(iii)	Use of $W = QV/2$ Or $W = CV^2/2$ Or use of area under graph $W = 5.1$ kJ (use of 4000 C gives $W = 5.2$ kJ (allow ecf from (a)(i))	(1) (1)	2
	Example of answer $W = 3900 \text{ C} \times 2.6 \text{ V} / 2$ $W = 5070 \text{ J}$		
3(b)(i)	Exponential decay Current decreases by equal fractions in equal time intervals	(1) (1)	2
3(b)(ii)	See attempt of I_0/e Finds time (accept 0.75-0.80s) Use of $\tau = RC$ $R = 0.0005 \Omega$	(1) (1) (1) (1)	
	Or Finds the time for I_0 to half Uses $t_{1/2} = \tau \ln 2$ Use of $\tau = RC$	(1) (1) (1)	
	$R = 0.00050 - 0.00053 \Omega$ Or See attempt of 37% of 5400 A Finds time (accept 0.75 to 0.80 s)	(1) (1) (1)	
	Use of $\tau = RC R = 0.0005 - 0.00053\Omega$ Or Draws tangent at $t = 0$ to meet time axis.	(1) (1)	
	Records intercept of tangent with axis (accept $0.6 \text{ s} - 0.9 \text{ s}$) Use of $\tau = RC$ $R = 0.0004 \Omega - 0.0006 \Omega$ Or	(1) (1) (1) (1)	4
	reads a value off the y-axis and corresponding time Subs into formula using 5400 (A) to find RC Substitutes for C to find R $R = 0.00050 \Omega - 0.00058 \Omega$	(1) (1) (1) (1)	
	Example of calculation 37% of 5400 A is 1998 A Time to fall to this value is 0.75 s RC = 0.75 s	(1) (1) (1) (1)	
	$R = 0.75 \text{ s} / 1500 \text{ F} = 0.0005 \Omega$	(1)	

3(c)	Max 3 Ultracapacitor used for: overtaking Or going up a hill Or starting (from rest) Or accelerating. Because this requires a large current/power. Batteries used for travelling at constant speed Because this requires a small current/power for a longer time (1)	3
	Total for question 17	15

Question Number	Answer		Mark
4(a)(i)	Capacitor, resistor, supply and switch all in series (ignore voltmeter) Voltmeter directly across capacitor	(1) (1)	2
4(a)(ii)	Or graph can be plotted directly/automatically Or simultaneous reading of t and V can be taken Or idea that people can't record quickly enough,	(4)	
	(treat as neutral accuracy, precision misreading or human reaction time)	(1)	1
4(b)	Use of $C = Q/V$ $Q = 5.0 \times 10^{-4} \text{ C}$	(1) (1)	2
	Example of calculation $Q = 100 \times 10^{-6} \text{ F} \times 5.0 \text{ V}$ $Q = 5.0 \times 10^{-4} \text{ C}$		
4(c)(i)	Use of $I = \Delta Q / \Delta t$ e.c.f their value of C from (b) I = 0.05 A (accept recalculation of Q using $V = 4.90 \text{ or } 4.95 \text{ V}$)	(1) (1)	2
	Example of calculation $I = 5.0 \times 10^{-4} \text{ C} / 10 \times 10^{-3} \text{ s}$ I = 0.05 A		
4(c)(ii)	tangent drawn at $t = 0$ $\Delta V / \Delta t = 2000 - 3300 \text{ V s}^{-1}$ Initial current = 0.22 - 0.28 A (MP2 & 3 can be scored even if no tangent drawn) (No credit for exponential calculation)	(1) (1) (1)	3
	Example of calculation $\Delta V / \Delta t = 1.1 \text{ V} / 0.5 \text{ ms} = 2200 \text{ V s}^{-1}$ $I = (\Delta V / \Delta t) \times \text{C}$ $I = 2200 \text{ V s}^{-1} \times 100 \times 10^{-6} \text{ F}$ I = 0.22 A		
4(c)(iii)	Use of $V = IR$ using answer from (ii) correct evaluation of R (5V used with current range in (ii) gives $18 - 23 \Omega$)	(1) (1)	2
	Example of calculation $5 V = 0.22 A \times R$ $R = 23 O$		
_PhysicsAnd	Maths Tutor.com Total for question 14		12

Question Number	Answer		Mark
5(a)(i)	Use of $t=RC$	(1)	
	Use of $T=1/f$ Or $f=1/t$	(1)	
	Comparison of 2.2 $\times 10^{-4}$ (s) << 2.5 $\times 10^{-3}$ (s)		
	Or comparison of 400 (Hz) << 4500 (Hz)		
	Or reference to nRC (needed for complete discharge) where $n = 3 - 11$ Or $e^{-T/t}$ is a very small value	(1)	3
		(-)	
5(a)(ii)	See $C = Q/V$ Or $Q = CV$	(1)	
	See $Q = It$	(1)	_
	See $t = 1/f$ Or $f = 1/t$	(1)	3
	(Answers based on $t = RC$ and $V = IR$ scores 0)		
5(a)(iii)	sub in $C = I/fV$	(1)	
	$C = 2.7 \mu F$	(1)	2
	Example of calculation		
	Example of calculation $C = 5.4 \times 10^{-3} \text{ A/} (400 \text{ s}^{-1} \times 5.0 \text{ V})$		
	$C = 2.7 \mu F$		
5(a)(iv)	$2.2 + 30\% = 2.9 (\mu \text{F})$		
	Or shows that 2.7 (uF) is +22% of 2.2 (uF)	(1)	
	Within tolerance / consistent	(1)	2
	(2nd mark can only be awarded following an attempt at either of the above	()	
	calculations)		
	If candidates make an error in (iii) allow full ecf with a valid comment		
	based on their values.		
5(b)	Use of $\frac{1}{2}CV^2$	(1)	
	W = 3.4 × 10 ⁻⁵ J (allow ecf from (iii) or use of 2.2 μ F \rightarrow 2.75 × 10 ⁻⁵ J)	(1)	2
	(allow cer from (iii) or use of 2.2 μ r \rightarrow 2.73 \wedge 10 \odot)		
	Example of calculation		
	$W = \frac{1}{2} 2.7 \ \mu F \times (5.0 \ V)^{2}$ $W = 3.4 \times 10^{-5} \ J$		
	W - 5.4 ^ 1U J		
	Total for question 16		12

Question Number	Answer	Mark
6 (a)	Method marks only Use of $Q=CV$ with $V=16$ V Max value of $C=12000$ (μ F) μ F means 10^{-6} conversion of μ F to F (1) Example of calculation $C_{max} = 1.20 \times 10000 = 12000$ F $C_{max} = 12000$ F $\times 16$ V $C_{max} = 0.192$ C	3
6 (b)	Either use of $\frac{1}{2}$ QV or $\frac{1}{2}$ CV^2 Energy = 1.5 J (1) Example of calculation $W = \frac{1}{2} 0.192 \text{ C} \times 16 \text{ V}$ Energy = 1.54 J	2
	Total for question 13	5