Question Number	Answer	Mark
1(a)	Increasing d will lead to a decrease in C Or see $Q / V=k / d$ Since $C=Q / V$ (a decrease in C) means a decrease in the charge on the capacitor Or if V is constant (a decrease in C) means a decrease in charge on capacitor	2
1(b)	Use of $C=k / d$ with $d=4.2(\mathrm{~mm})$ use of $Q=C V$ with $V=6 \mathrm{~V}$ or cancelled later use of $\Delta Q / Q$ or $\Delta C / C$ $\%$ change $=17 \%$ Example of calculation $\begin{aligned} & Q=\frac{6 \mathrm{~V} \times 2.8 \times 10^{-15} \mathrm{Fm}}{3.5 \times 10^{-3} \mathrm{~m}}=4.8 \times 10^{-12} \mathrm{C} \\ & Q=\frac{6 \mathrm{~V} \times 2.8 \times 10^{-15} \mathrm{Fm}}{4.2 \times 10^{-3} \mathrm{~m}}=4.0 \times 10^{-12} \mathrm{C} \\ & \frac{4.8 \times 10^{-12} \mathrm{C}-4.0 \times 10^{-12} \mathrm{C}}{4.8 \times 10^{-12} \mathrm{C}}=16.7 \% \end{aligned}$	4
1(c)	(rapid changes in position) mean that rapid changes in Q Or a shorter time to charge/discharge (small C gives) shorter time constant/RC	2
	Total for question 13	8

Question Number	Answer		Mark
2(a)	Use of $C=Q / V$ $V=15 \mathrm{~V}$ Use of $W=Q V / 2$ Or $W=C V^{2} / 2$ Or $W=Q^{2} / 2 C$ $W=2.5 \times 10^{-5} \mathrm{~J}$ (candidates who use $6.6 \times 10^{-6} \mathrm{C}$ can only score MP1 and MP3) $\begin{aligned} & \text { Example of calculation } \\ & V=Q / C=3.3 \times 10^{-6} \mathrm{C} / 220 \times 10^{-9} \mathrm{~F} \\ & V=15 \mathrm{~V} \\ & W=Q V / 2=\left(3.3 \times 10^{-6} \mathrm{C} \times 15 \mathrm{~V}\right) / 2 \\ & W=2.5 \times 10^{-5} \mathrm{~J} \end{aligned}$	(1) (1) (1) (1)	4
2(b)	$Q=0.2 Q_{0} \text { Or } Q=6.6 \times 10^{-7} \mathrm{C}$ Use of $Q=Q_{0} \mathrm{e}^{-t / R C}$ $t=7.1 \mathrm{~s}$ (candidates who use $Q=0.8 Q_{0}$ can only score MP2) Example of calculation $\begin{aligned} & Q=0.2 Q_{0} \\ & Q=Q_{0} \mathrm{e}^{-t / R C} \\ & 0.2 Q_{0}=Q_{0} \mathrm{e}^{-t / R C} \\ & \ln (0.2)=-\mathrm{t} /\left(20 \times 10^{6} \Omega \times 220 \times 10^{-9} \mathrm{~F}\right) \\ & t=7.1 \mathrm{~s} \end{aligned}$	(1) (1) (1)	3
2(c)	Either refers to $W=Q^{2} / 2 C$ Or $W \alpha Q^{2}$ If Q halves, $W \rightarrow Q^{2} / 8 C$ Or halving Q quarters W (Since W becomes a quarter in the time for Q to half) it takes less time for the energy to halve than the charge to halve. (dependent mark on either MP1 or MP2) Or Refers to $W=Q V / 2$ Q and V both decrease over time W will decrease faster so takes less time to half in value. (dependent mark on either MP1 or MP2)	(1) (1) (1) (1) (1) (1)	3
2(d)	Synchronous readings Or data logger records readings at exact time Or voltmeter and stop watch need 2 people and data logger only one More readings can be taken in a shorter time Or higher sampling rate (treat as neutral any reference to graph plotting automatically, human reaction time or accuracy)	(1) (1)	2
	Total for question 15		12

$\left.\begin{array}{|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & & \text { Mark } \\ \hline \text { 3(a)(i) } & \begin{array}{l}\text { Use of } Q=C V \\ Q=3900(\mathrm{C})\end{array} & \mathbf{(1)} & \\ & \begin{array}{l}\text { Example of answer }\end{array} \\ & \begin{array}{l}Q=1500 \mathrm{~F} \times 2.6 \mathrm{~V}\end{array} & \\ \hline Q=3900 \mathrm{C}\end{array}\right]$

3(c)	Max 3 Ultracapacitor used for: overtaking Or going up a hill Or starting (from rest) Or accelerating. Because this requires a large current/power. Batteries used for travelling at constant speed Because this requires a small current/power for a longer time	(1) (1) (1) (1)	3
	Total for question 17		15

Question Number	Answer		Mark
4(a)(i)	Capacitor, resistor, supply and switch all in series (ignore voltmeter) Voltmeter directly across capacitor	(1) (1)	2
4(a)(ii)	Datalogger allows large number of readings to be taken Or graph can be plotted directly/automatically Or simultaneous reading of t and V can be taken Or idea that people can't record quickly enough, (treat as neutral accuracy, precision misreading or human reaction time)	(1)	1
4(b)	$\begin{array}{\|l} \hline \text { Use of } C=Q / V \\ Q=5.0 \times 10^{-4} \mathrm{C} \end{array}$ Example of calculation $\begin{aligned} & Q=100 \times 10^{-6} \mathrm{~F} \times 5.0 \mathrm{~V} \\ & Q=5.0 \times 10^{-4} \mathrm{C} \end{aligned}$	(1) (1)	2
4(c)(i)	Use of $I=\Delta Q / \Delta t$ e.c.f their value of C from (b) $I=0.05 \mathrm{~A}$ (accept recalculation of Q using $V=4.90$ or 4.95 V) Example of calculation $\begin{aligned} & I=5.0 \times 10^{-4} \mathrm{C} / 10 \times 10^{-3} \mathrm{~s} \\ & I=0.05 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$	2
4(c)(ii)	tangent drawn at $\mathrm{t}=0$ $\Delta V / \Delta t=2000-3300 \mathrm{~V} \mathrm{~s}^{-1}$ Initial current $=0.22-0.28 \mathrm{~A}$ (MP2 \& 3 can be scored even if no tangent drawn) (No credit for exponential calculation) Example of calculation $\begin{aligned} & \Delta V / \Delta t=1.1 \mathrm{~V} / 0.5 \mathrm{~ms}=2200 \mathrm{~V} \mathrm{~s}^{-1} \\ & I=(\Delta V / \Delta t) \times \mathrm{C} \\ & I=2200 \mathrm{~V} \mathrm{~s}^{-1} \times 100 \times 10^{-6} \mathrm{~F} \\ & I=0.22 \mathrm{~A} \end{aligned}$	(1) (1) (1)	3
4(c)(iii)	Use of $V=I R$ using answer from (ii) correct evaluation of R (5 V used with current range in (ii) gives 18-23 Ω) Example of calculation $5 \mathrm{~V}=0.22 \mathrm{~A} \times R$ $P=23 \Omega^{2}$	(1) (1)	2
	Total for question 14		12

Question Number	Answer	Mark
5(a)(i)	Use of $t=R C$ Use of $T=1 / f \quad$ Or $f=1 / t$ Comparison of $2.2 \times 10^{-4}(\mathrm{~s}) \ll 2.5 \times 10^{-3}$ (s) Or comparison of $400(\mathrm{~Hz}) \ll 4500(\mathrm{~Hz})$ Or reference to nRC (needed for complete discharge) where $\mathrm{n}=3-11$ Or $\mathrm{e}^{-\mathrm{T} / \mathrm{t}}$ is a very small value	3
5(a)(ii)	See $C=Q / V$ Or $Q=C V$ See $Q=I t$ See $t=1 / f$ Or $f=1 / t$ (Answers based on $t=\mathrm{RC}$ and $\mathrm{V}=\mathrm{IR}$ scores 0)	3
5(a)(iii)	sub in $C=I / f V$ $\begin{equation*} \mathrm{C}=2.7 \mu \mathrm{~F} \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & \mathrm{C}=5.4 \times 10^{-3} \mathrm{~A} /\left(400 \mathrm{~s}^{-1} \times 5.0 \mathrm{~V}\right) \\ & \mathrm{C}=2.7 \mu \mathrm{~F} \end{aligned}$	2
5(a)(iv)	$2.2+30 \%=2.9(\mu \mathrm{~F})$ Or shows that $2.7(\mathrm{uF})$ is $+22 \%$ of $2.2(\mathrm{uF})$ Within tolerance / consistent (2nd mark can only be awarded following an attempt at either of the above calculations) If candidates make an error in (iii) allow full ecf with a valid comment based on their values.	2
5(b)	Use of $1 / 2 C V^{2}$ $\mathrm{W}=3.4 \times 10^{-5} \mathrm{~J}$ (allow ecf from (iii) or use of $2.2 \mu \mathrm{~F} \rightarrow 2.75 \times 10^{-5} \mathrm{~J}$) Example of calculation $\begin{aligned} \mathrm{W} & =1 / 22.7 \mu \mathrm{~F} \times(5.0 \mathrm{~V})^{2} \\ \mathrm{~W} & =3.4 \times 10^{-5} \mathrm{~J} \end{aligned}$	2
	Total for question 16	12

Question Number	Answer		Mark
6(a)	Method marks only Use of $Q=C V$ with $V=16 \mathrm{~V}$ Max value of $C=12000(\mu \mathrm{~F})$ $\mu \mathrm{F}$ means 10^{-6} conversion of $\mu \mathrm{F}$ to F Example of calculation $\begin{aligned} & \mathrm{C}_{\max }=1.20 \times 10000=12000 \mathrm{~F} \\ & \mathrm{C}_{\max }=12000 \mathrm{~F} \times 16 \mathrm{~V} \\ & \mathrm{Q}_{\max }=0.192 \mathrm{C} \end{aligned}$	(1) (1) (1)	3
6(b)	Either use of $1 / 2 Q V$ or $1 / 2 C V^{2}$ Energy $=1.5 \mathrm{~J}$ $\begin{aligned} & \text { Example of calculation } \\ & W=1 / 20.192 \mathrm{C} \times 16 \mathrm{~V} \\ & \text { Energy }=1.54 \mathrm{~J} \end{aligned}$	(1) (1)	2
	Total for question 13		5

